
UCRL-CONF-222859

Implicit solvers for large-scale
nonlinear problems

D. E. Keyes, D. Reynolds, C. S. Woodward

July 14, 2006

SciDAC PI Meeting
Denver, CO, United States
June 25, 2006 through June 29, 2006



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Implicit solvers for large-scale nonlinear problems

David E. Keyes1, Daniel R. Reynolds2 and Carol S. Woodward3, 4

1 Department of Applied Physics and Applied Mathematics, Columbia University, MC 4701,
New York, NY 10027, USA
2 Department of Mathematics, University of California at San Diego, 9500 Gilman Dr., La
Jolla, CA 92093-0112, USA
3 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O.
Box 808, L-561, Livermore, CA 94551, USA

E-mail: david.keyes@columbia.edu, drreynolds@ucsd.edu, cswoodward@llnl.gov

Abstract. Computational scientists are grappling with increasingly complex, multi-rate
applications that couple such physical phenomena as fluid dynamics, electromagnetics, radiation
transport, chemical and nuclear reactions, and wave and material propagation in inhomogeneous
media. Parallel computers with large storage capacities are paving the way for high-resolution
simulations of coupled problems; however, hardware improvements alone will not prove
enough to enable simulations based on brute-force algorithmic approaches. To accurately
capture nonlinear couplings between dynamically relevant phenomena, often while stepping over
rapid adjustments to quasi-equilibria, simulation scientists are increasingly turning to implicit
formulations that require a discrete nonlinear system to be solved for each time step or steady
state solution. Recent advances in iterative methods have made fully implicit formulations
a viable option for solution of these large-scale problems. In this paper, we overview one
of the most effective iterative methods, Newton-Krylov, for nonlinear systems and point to
software packages with its implementation. We illustrate the method with an example from
magnetically confined plasma fusion and briefly survey other areas in which implicit methods
have bestowed important advantages, such as allowing high-order temporal integration and
providing a pathway to sensitivity analyses and optimization. Lastly, we overview algorithm
extensions under development motivated by current SciDAC applications.

1. Introduction
The ability to solve large-scale, fully coupled multiphysics models is vital to progress in
computational science; when it is lacking, various compromises are often made that cost time,
scientific opportunity, or confidence in the results of a simulation. Efficient computation of
solutions to such models requires robust and efficient algorithms for solving very large systems
of coupled nonlinear algebraic equations. Particularly needed are algorithms that can exploit
distributed hierarchical memory computers and have convergence rates that do not degrade
as resolution improves or concurrency increases. A family of such algorithms has emerged in
recent years; however, there is no universal best approach for all systems. The combinatorial
and multiparametric richness of such algorithms, though at first confusing, provides a means of
adapting to different physical regimes and different computer architectures, and also to exploiting
legacy solvers – as a component of a more comprehensive approach.

4 Work of this author was performed under the auspices of the U.S. Department of Energy by University of
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.



Implicit nonlinear solvers potentially offer three primary benefits to the designer of a large-
scale simulation code: affordable stability in multirate problems, affordable accuracy in complex
problems, and (as a result of the way they are usually implemented) affordable sensitivities in
all problems. Sensitivities (the rate at which perturbations in selected input parameters of a
model amplify changes in selected outputs) are, in turn, fundamental to many of the ultimate
scientific or engineering purposes of creating a simulation code: quantification of uncertainty
and various forms of optimization, including design, control, and parameter identification.

Many multirate problems in science and engineering are characterized by the presence of
slowly varying phenomena that hold most of the energy and interest in the simulation (e.g., that
travel at the group velocity) and rapidly varying phenomena that are unimportant to the results
of interest (e.g., that travel at the phase velocity). Examples abound: Alfven waves in a plasma
discharge model, surface gravity waves in a climate model, acoustic waves in flight aerodynamics,
fast chemical reactions among intermediates in complex biological or industrial systems. In these
and many other systems, an explicit integration scheme is obligated to resolve the most rapid
phenomenon in order to preserve numerical stability, as explicated by CFL theory, even though
accurate resolution of the phenomena of interest could be achieved with time steps many orders
of magnitude larger. CFL-type stability limits prevent even weak-scaling in the asymptotic limit
of large numbers of available processors and therefore impose ultimate limits to resolution in
practical computation. Therefore, the purpose of a simulation dictates the minimum time scale
to be resolved; when it is substantially larger than the stability limit, implicit methods are called
for. (We hasten to acknowledge that in many multirate systems, there are essential interactions
between the disparate scales, and filtering the rapid transients may obscure critical phenomena,
as in acoustically enhanced combustion, for instance. Implicit methods are not relevant for
stability reasons alone to all problems, though robustness with respect to instability, especially
instability whose cause is not undertood, is often the most dramatic motivation for implicitness.)

In the absence of effective nonlinear implicit methods, many complex problems are attacked
by operator splitting, in which different terms of the governing system are advanced in different
fractional steps, using optimized, process-specific solvers. Such splittings in first-order evolution
equations generally result in first-order splitting errors (though higher-order splitting errors can
be obtained in some important special cases). These errors thus render high-order temporal
integration schemes for each component of the simulation irrelevant to overall simulation
accuracy, and often impose a severe time step restriction due to accuracy or stability – up
to orders of magnitude below an acceptable time step for a fully implicit integrator of the same
or higher temporal order.

Efficient implicit nonlinear methods must generally be built around one of the numerous
variants of Newton’s method. Newton’s method possesses quadratic local convergence hence it
is ideally suited to any problem in which a good initial guess, or a good globalizer, is available.
Transient problems come with good initial guesses for Newton’s method, and many steady-
state problems can be equipped with continuation schemes, using a physical or a discretization
parameter, to quickly generate an iterate that lies within the radius of quadratic convergence.
Newton is also well known to exhibit a convergence rate that is independent of spatial resolution
in systems arising from PDEs, provided that this property can be achieved for the inner
linear solver. The fundamental algorithmic challenge for Newton’s method is to invert (merely
approximately in many cases) the action of a Jacobian matrix on an arbitrary vector (see Section
2). This is precisely the action required to compute sensitivity information, where the vector is in
this case not arbitrary, but consists of easily computed or estimated partial derivatives. Hence,
many useful actions are built around the inverse action of a Jacobian matrix that otherwise
require many expensive repeated forward solves of the governing system to reproduce.

We conclude that if an implicit method is available, it often becomes the solver of choice.
It is therefore good news that an implicit method can often be constructed with relatively



modest machinery around an approximate or semi-implicit method, which is used as part of
a preconditioner for the implicit, and sometimes from purely algebraic constructs that require
little or no understanding of the governing system.

The balance of this chapter is organized as follows. Section 2 outlines the Newton-Krylov
family of outer-inner iterative methods for nonlinear systems. Section 3 lists some of the freely
available software, much of which originates within the U.S. DOE and is currently maintained
and developed under the SciDAC program. Some new numerical results motivated directly by
interactions between physicists and mathematicians under the SciDAC program in the area of
plasma fusion are described in Section 4. Finally, Section 5 lists some of the challenges and
opportunities facing algorithm developers in this area today.

2. Methods
As discussed above, implicit numerical approaches can provide a variety of benefits to the
designer of a large-scale simulation code. Developing an implicit solution approach, however,
can lead to a fairly complex structure of solvers. In this section, we will overview the most
efficient nonlinear system solver family, its most common use, and some typical variations.

For time-dependent problems, or even for steady-state problems stabilized using continuation
approaches, a typical implicit solution method will include an outermost time integration loop.
At each step of this loop, an approximate solution will need to be calculated by solving a coupled,
nonlinear discrete system. Let us denote this system as

F (u(tn)) = 0, (1)

where u(tn) ∈ IRN is the vector of solution unknowns at time tn, e.g. solution values, finite
element weights, or even Fourier coefficients.

Due to its fast quadratic convergence and its ability to effectively use scalable preconditioners,
the Newton-Krylov family of methods has become the standard for solvers of implicit, large-scale,
nonlinear systems [1]. In this strategy, Newton’s method is applied to solve the nonlinearities
in the problem, and a Krylov iterative method is used to solve the linear systems arising within
each Newton iteration. As Krylov methods can sometimes converge slowly, preconditioners are
used to accelerate the linear solve. The main structure of this preconditioned Newton-Krylov
solver applied to the system F (u) = 0 is as follows:

Assign an initial state u0 at time t0:
For each time step n = 1, . . . , N find un ≈ u(tn) by Newton’s method:

1. Assign an initial Newton guess un(0) (typically un(0) = un−1)
2. For each Newton iteration k = 1, 2, . . .

A. Using a Krylov method, approximately solve for sk+1,
JF

(
un(k)

)
sk+1 = −F

(
un(k)

)
so that

∥∥∥JF

(
un(k)

)
sk+1 + F

(
un(k)

)∥∥∥ ≤ ltol.
Each Krylov iteration requires:
i. One matrix-vector multiply with JF

(
un(k)

)

ii. One preconditioner solve
B. Update the Newton iterate, un(k+1) = un(k) + λsk+1

C. Test for convergence,
∥∥∥F

(
un(k+1)

)∥∥∥ < ftol.

Here, JF

(
un(k)

)
is the Jacobian of the nonlinear function F (u) evaluated at the previous Newton

iterate un(k), and λ ∈ (0, 1] is a line search parameter chosen to help globalize the method.



Krylov methods develop an approximation to the solution of the linear system Js = −F by
iteratively building a Krylov subspace of dimension m defined by

K(r0, J) = span
{
r0, Jr0, J

2r0, . . . , J
m−1r0

}
, (2)

where r0 is the initial residual of the linear system. The approximation is then chosen depending
on the particular Krylov method: a solution within the subspace that minimizes the linear
system residual (a minimal residual method), or one that gives a residual orthogonal to the
Krylov subspace (an orthogonal residual method). Further details of these methods can be
found in [2, 3]. Within Newton-Krylov methods, the two most commonly used Krylov methods
are GMRES [4] and BiCGStab [5], as these methods are designed to handle non-symmetric
linear systems typical multi-physics simulation. GMRES tends to be the most used as it is very
robust although it has a heavy memory requirement. While BiCGStab can have a much lower
memory requirement, it is less robust as evidenced by a non-monotonically decreasing residual.

Newton’s method is chosen for many applications because of its very fast convergence. Once
the approximate solution, uk is “close enough” to the true solution of the nonlinear system, u∗,
then convergence is q-quadratic, i.e.

‖uk+1 − u∗‖ ≤ C‖uk − u∗‖2,

where C is a constant independent of uk and u∗. This result assumes that the Jacobian systems
are solved exactly. If these systems are solved inexactly, as in a Newton-Krylov method, then care
must be taken to chose the linear system tolerance ltol carefully in order to preserve convergence
of the overall nonlinear method [6]. In particular, if we take ltol = ηk‖F k‖, then q-quadratic
convergence is retained if ηk is taken to be C‖F k‖ so that ltol = C‖F k‖2, where C is a constant
independent of the solution or current iterate. If instead, we have that limk→∞ ηk = 0, then
convergence is provably q-superlinear, whereas if ηk is constant in k, convergence is only linear.

An issue often arising in use of Newton-Krylov methods is that of getting uk “close enough” to
the solution to see fast convergence. In order to improve the robustness and speed of the method,
globalization techniques are often applied. These techniques take many forms, such as with line
search methods, where the step in the Newton direction may be damped in order to ensure a
sufficient decrease in F with a minimum step length. Other techniques include pseudo-transient
continuation (for steady-state problems), where a false time stepping mechanism is added to
aid solution while slowly increasing the time step to ∞; a hybrid nonlinear scheme, where one
might start with a slower but more globally-convergent fixed point iteration and then switch to
a Newton method as the solution is approached; or trust region methods, where directions other
than the Newton direction are considered in order to more quickly find the solution. For more
information on these and other techniques see [7].

The tolerance ηk of these linear system solves may be adjusted to aid efficiency of the overall
method. Since the Newton system is a linear model of the original nonlinear system, the model
is a better approximation as the solution of the nonlinear problem is approached. When far from
the solution, then, one should not solve the linear model too precisely, and thus “oversolve” the
step. As a result, Eisenstat and Walker introduced two choices for selecting these tolerances
which take into account how well the nonlinear system is converging:

ηk =

∣∣∣‖F k‖ − ‖Jk−1sk−1 + F k−1‖
∣∣∣

‖F k−1‖ , (3)

ηk = γ1

(
‖F k‖
‖F k−1‖

)γ2

, (4)



where γ1 and γ2 are usually taken to be 0.9 and 2, respectively [8]. The first of these choices uses
a measure of how well the linear model agreed with the nonlinear system at the prior step, while
the second uses a measure of the rate of convergence of the nonlinear system. Eisenstat and
Walker showed that under appropriate assumptions, these choices retain the local convergence
of the underlying inexact Newton method [8].

One main advantage of Krylov methods for use within Newton’s method is that they do not
require formation of the Jacobian matrix. Instead, they only require matrix-vector products,
that, for sufficiently differentiable F (u), can be approximated by finite differences as given by

JF

(
un(k)

)
v ≈

F
(
un(k) + σ

)
− F

(
un(k)

)

σ
(5)

while still preserving convergence of the overall method [9, 10]. Thus, as long as the nonlinear
function can be evaluated at each linear iteration, the Newton-Krylov solve can proceed without
forming derivatives or requiring memory for storage of the full Jacobian matrix.

One issue that arises within Newton-Krylov methods is the expense of performing these
nonlinear function evaluations at each linear iteration. A recent variant on Newton-Krylov
methods uses an approximation to the nonlinear function in the finite difference scheme given
by

JF

(
un(k)

)
v ≈

F̃
(
un(k) + σ, un(k)

)
− F

(
un(k)

)

σ
, (6)

where F̃ (v, w) is a related function such that F̃ (v, v) = F (v) and F̃ includes approximations
to nonlinearities in F that are cheaper to evaluate than those found in the original problem.
Under certain assumptions defined in [11] the resulting approach will again preserve the local
convergence of Newton’s method while reducing compute time over the original Newton-Krylov
method.

In many instances, Krylov convergence can be slow, leading to poor performance of Newton-
Krylov methods. For this reason, preconditioners are often applied to the linear iterations. The
goal of preconditioning is to transform a linear system from one that is difficult for a Krylov
method to solve to an easier one, solve the easier system, and transform the solution back to
one for the original problem. Preconditioning can be formulated from the right, from the left,
or from both. These can be viewed as the following systems, respectively.

(JP−1)(Ps) = −F (right),
(P−1J)s = −P−1F (left),

(P−1
1 JP−1

2 )(P2s) = −P−1
1 F (both).

In practice, preconditioning amounts to finding a cheaper related system and inexactly solving
this system within each linear iteration. We note that approximations employed within the
preconditioner do not affect the overall accuracy of the solution to the nonlinear problem. For
more details, see [2].

In the case of a full Newton method, the Jacobian matrix is formed, and incomplete or
banded approximations to the Jacobian are factored and stored for use in preconditioning.
Due to the directional derivative approximations (5), Newton-Krylov methods do not require
explicit construction of the Jacobian matrix. As a result, more specific methods must be
developed for preconditioning. In particular, preconditioning systems are formed through a
number of approximation methods, such as operator splitting different physical phenomena and
solving each operator in succession or using an approximate Jacobian such as would be formed



from a lagged or Picard iteration rather than a first order approximation such as in Newton’s
method. In situations when a simulation code is being converted from an explicit or semi-
implicit formulation, these strategies often lead to systems that are computed and solved using
functionality already in the simulation code. Thus, code developers can make use of current
code capabilities which are already developed and verified.

3. Software
Due to the modular nature of the Newton-Krylov approach, there are a number of community-
supported, high-quality software packages that implement one or all of the steps described in
Section 2. In particular, the proposed TOPS center includes five packages with algorithms
of use to implicit simulations. The SUNDIALS library implements the Newton-Krylov
approach discussed above with line search globalization and Eisenstat and Walker tolerance
selections. SUNDIALS also includes time integration packages for ordinary differential equations
in CVODE and differential algebraic equations in IDA, along with extensions of these two
integration packages for computation of sensitivity information [12]. The PETSC library
enacts the above nonlinear framework, with additional support for handling parallel PDE-
based systems, including performance monitoring capabilities. Additionally, if a code uses one
of the PETSc-supplied data structures, a rich variety of preconditioning strategies including
domain decomposition methods is also included [13]. The TRILINOS Project is comprised of a
number of interoperable software packages that perform many scientific computation methods.
Of applicability to nonlinear systems the TRILINOS NOX package of nonlinear solvers contains
the Newton-Krylov approach as described above, along with a number of globalization methods
and fixed point iterations. These implementations can be combined with the TRILINOS LOCA
package, that enables continuation methods and bifurcation analysis [14].

A common theme throughout many of these software packages is the relative ease with which
existing scientific application software may be expanded to use the Newton-Krylov approach.
Through examination of the Newton-Krylov method, and specifically the use of the directional-
derivative approximation (5), we see that the basic implicit solver framework relies on the ability
to perform a relatively small number of operations: vector operations on u such as addition,
norms and dot-products, along with application of the nonlinear residual function F (u) that
takes one vector as input (u) and returns a vector of the same size as output. Thus, the
basic algorithmic requirements do not require knowledge of how data is laid out, only on the
user’s ability to supply these vector operations and residual evaluations. In many cases, vector
operations may already exist for the data structures in use by a given application, in which
case only the residual calculation need be supplied, and even that may often be constructed
out of existing simulation routines. The three packages discussed above, SUNDIALS, PETSC,
and TRILINOS, all implement the Newton-Krylov family of algorithms in terms of these basic
operations. It is in this way that many applications may quickly begin to enjoy the benefits of
increased stability and accuracy allowed through the Newton-Krylov approach.

Once the basic approach has proven successful, the major work in moving an application to
larger scales is in the development of a scalable and effective preconditioner for the problem, and
in ensuring that the function evaluation remains scalable. TOPS includes two other packages
which, in addition to PETSC and TRILINOS, can provide preconditioning methods. The
HYPRE project offers a number of high performance preconditioners with a focus on multigrid
(structured and algebraic). This package supports a variety of discretization-based interfaces
allowing a natural problem description for setting matrix data in the contexts of grids and
stencils, finite elements, or algebraic for unstructured problems (with matrix and right-hand
side) [15]. The SuperLU library supports the direct solution of large, sparse, nonsymmetric
systems of linear equations on high performance machines, and is based on LU decompositions
and triangular solves [16]. Due to more invasive algorithmic requirements, these packages require



a user to place data into provided structures, however, in order to realize significant scalability.
We note that the computations in the following Section 4 were performed using the

SUNDIALS library.

4. Numerical Examples
As described in Section 2, one significant benefit to using nonlinearly implicit approaches for
integrating multi-physics simulations is that they are free from stability-based restrictions on the
time step size. Instead, the time step may be chosen to provide temporally accurate simulations
following the dynamical time scales of scientific interest. We illustrate this property with the
following example from magnetic fusion simulations.

In magnetically-confined plasmas, magnetic reconnection (MR) processes convert magnetic
field energy into plasma kinetic and thermal energy, resulting in large-scale topological changes in
the magnetic flux surfaces that may interfere with or even halt the fusion process. Therefore, the
ability to simulate such phenomena is critical to develop increased understanding and possibly
control over reconnection events. One model that has been traditionally used to study these
processes is that of single-fluid resistive magnetohydrodynamics, which couples the equations
of hydrodynamics with resistive Maxwell’s equations, modeling the plasma as a charged fluid
that interacts with and on the background electromagnetic field. In this model, the speed
of the reconnection process, or the reconnection rate, is of key interest, and depends on the
magnetic resistivity η or Lundquist number S (S ∝ 1/η). This dependence is known in the
literature as Sweet-Parker scaling [17, 18], which states that the reconnection rate for unforced
reconnection should scale proportionally to S−1/2. Moreover, the reconnection process itself
occurs in a thin current sheet, whose width also scales proportionally to S−1/2. Therefore as
the Lundquist number increases, the time-to-completion for MR simulations increases, while
the spatial resolution required to resolve the current layer shrinks. Therefore, for explicit-
time methods that must satisfy a diffusive CFL stability constraint in which ∆t ∝ S∆x2, the
computational time required to complete a simulation of the reconnection process should scale
as S3/2; similarly, semi-implicit methods that require time step constraints of ∆t ∝ ∆x should
require simulation times that scale as S3/2. The scale of the problem becomes apparent when we
consider that the current state-of-the-art in simulation codes remains around S = 104. While
this provides a realistic value for some magnetic fusion devices, such as CDX-U, it remains four
to five orders of magnitude below the estimated values required to model next-generation fusion
reactors, such as ITER (where S ≈ 5 ∗ 108).

As such, this problem proves an ideal example to demonstrate the benefits of using a fully-
implicit approach, that, assuming perfectly-scalable solvers, should require computational times
to complete MR simulations that scale as S. The results provided here use a high-order-
accurate, fully implicit approach for solving the 2D single-fluid MHD equations, as described
in [19], that is based on the CVODE solver from the SUNDIALS library [20, 21]. The results
shown examine the computed time-to-simulation for this approach, compared with a similarly-
accurate fully-explicit simulation code, as the Lundquist number is increased through the
values S = {100, 500, 1000, 2500, 5000, 10000}. In these examples, the simulation times proceed
just past the peak reconnection time, which we have used as T = {20, 40, 60, 90, 125, 180}.
Additionally, as the Lundquist number is increased, we refine the mesh in order to resolve the
current layer, using values of ∆x = {0.4, 0.2, 0.1, 0.05, 0.025, 0.0125}. Moreover, as these meshes
are refined, we increase the number of processors used so that Np = {1, 2, 4, 16, 64, 256}.

As seen in the plot for figure 1, both explicit and implicit simulations require an increasing
number of time steps to complete the magnetic reconnection simulation as the Lundquist number
is increased. However, while the explicit simulation begins requiring only 50% more time steps
than the implicit at S = 100, this disparity grows to more than a factor of 5 at S = 10000,
with the gap widening as S increases. We also see in Figure 2 that this improved scaling of



100 500 1000 2500 5000 10000
10

2

10
3

10
4

10
5

10
6

S

T
im

e 
S

te
ps

Time Steps vs Lundquist Number

 

 

Explicit
Implicit

Figure 1. Explicit and Implicit time steps
required for MR simulations with increasing
S (and appropriate spatial mesh refinement).

100 500 1000 2500 5000 10000
0

1

2

3

4

5

6

7

8

S

S
ca

le
d 

R
un

tim
e

Scaled Runtime vs Lundquist Number

 

 

Explicit
Implicit

Figure 2. Explicit and Implicit scaled run-
times for magnetic reconnection simulations,
as the Lundquist number is increased.

implicit time steps results in scaled run times that increasingly best those from the explicit
simulation. By scaled run times, we show the simulation time required on average per spatial
mesh point, which removes the increase in simulation time due to the refining spatial mesh from
the comparison, in order to more accurately elucidate the effects of the time-stepping algorithm
and solver scalability. We note, however, that as the Lundquist number is increased, and the
spatial mesh is reduced to properly capture the thinning reconnection layer, the implicit solver
must perform an increasing amount of work. This is due to the fact that as the mesh is refined,
the condition number of the un-preconditioned Jacobian matrix grows as 1/∆x2. Thus, although
the implicit solver requires fewer and fewer time steps compared with the explicit, those time
steps are increasingly difficult to solve. As such, these non-preconditioned implicit results do
not exhibit the optimal scaling of simulation time with S. However, even without the benefit
of optimal preconditioners, these simple MR simulations already benefit tremendously from the
use of the fully-implicit approach.

5. Looking Ahead
Despite the significant advances taken by applications such those described in Section 4, much
research remains before Newton-Krylov methods can be used robustly in other situations.
Specifically, open issues remain with respect to preconditioning, discontinuities, adaptive meshes,
and variable constraints. These are all active areas of current research, and advances here will
significantly increase the number of applications which can take advantage of larger, stable time
steps tracking relevant physics.

As discussed above, preconditioners are required for many applications. The choice of such
a preconditioner, however, is not immediately clear in some areas, and in others a fully scalable
implementation may require significant effort. For example, in an application with nonlinear
couplings between multiple species, the preconditioner may need to include couplings if they are
tight, or may be able to split them apart. These types of choices are application-specific and
must be handled with care.

Another difficulty with using the Newton family of methods is that they require continuity
of the nonlinear function for provable convergence, and additional differentiability if directional
derivative approximations (5) are used. Application of certain discretization schemes (such as
limiters in fluid dynamics) or use of tabulated data (such as is found in diffusion coefficients
in porous media flow) can result in discontinuous nonlinear functions. As a result, convergence



of these methods can stagnate in practice. Prior work has shown that careful selection of
differentiable limiters in fluid dynamics can lead to effective Newton methods [22, 23], and use
of spline functions can give robustness in situations with discontinuities in material data [24].
Much work remains, however, to determine the most effective discretizations for use in individual
implicit formulations.

For adaptive meshes, there is no fundamental difficulty with applying implicit formulations, as
the nonlinear problem can be viewed as existing on the final composite mesh that includes both
coarse and fine regions. Issues arise, however, in assuring conservation properties hold, especially
in the case of discretization schemes employing face- or node-centered unknowns. In these cases,
explicit schemes more easily allow “refluxing” techniques which can distribute fluxes after the
explicit update in order to assure conservation. These techniques are not straightforward within
implicit approaches, as they may deleteriously affect solution accuracy as defined through the
nonlinear residual function F (u).

Lastly, many applications require variables to stay within a designated region (such as species
concentrations remaining positive or energies not going negative). Typically, explicit codes
include a post-timestep fix where variables are floored or moved within their allowed regions.
Within an implicit solve as discussed above, the solver will update the solution and re-evaluate
the nonlinear function repeatedly. As a result, difficulties may arise in computation of material
parameters if solutions are moved along the Newton direction but out of their allowed regions.
Methods for handling such constraints are included in most available software, though these
methods tend to be ad hoc, and more robust techniques should be developed.

Acknowledgements
The authors wish to thank Ravi Samtaney for use of his magnetic reconnection code to generate
the Sweet-Parker scaling example in Section 5.

References
[1] D. A. Knoll and D. E. Keyes. Jacobian-free Newton–Krylov methods: a survey of approaches and

applications. J. Comp. Phys., 193:357–397, 2004.
[2] C. T. Kelley. Solving Nonlinear Equations with Newton’s Method, volume 1 of Fundamentals of Algorithms.

SIAM, Philadelphia, PA, 2003.
[3] R. W. Freund, G. H. Golub, and N. M. Nachtigal. Iterative solution of linear systems. In A. Iserles, editor,

Acta Numerica, pages 57–100. Cambridge Univ. Press, New York, 1992.
[4] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric

linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869, July 1986.
[5] H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of

nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13(2):631–644, 1992.
[6] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM J. Numer. Anal., 19:400–

408, 1982.
[7] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear

Equations. SIAM, Philadelphia, PA, 1996.
[8] S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact Newton method. SIAM J. Sci.

Comp., 17(1):16–32, January 1996.
[9] P. N. Brown and Y. Saad. Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Statist.

Comput., 11:450–481, 1990.
[10] P. N. Brown. A local convergence theory for combined inexact-Newton/finite-difference projection methods.

SIAM J. Numer. Anal., 24:407–434, 1987.
[11] P. N. Brown, H. F. Walker, R. Wasyk, and C. S. Woodward. On using approximate finite-differences in

matrix-free Newton–Krylov methods. Submitted. LLNL Technical Report UCRL-JRNL-219284, 2006.
[12] SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic Solvers). http://www.llnl.gov/casc/sundials.
[13] PETSC (Portable, Extensible Toolkit for Scientific Computation). http://www-unix.mcs.anl.gov/petsc.
[14] Trilinos. http://software.sandia.gov/trilinos.
[15] HYPRE (High Performance Preconditioners). http://www.llnl.gov/casc/linear solvers.
[16] SuperLU. http://www.nersc.gov/ xiaoye/SuperLU.



[17] D. Biskamp. Magnetic reconnection in plasmas. Cambridge monographs on plasma physics, third edition,
2000.

[18] J. Birn and et al. Geospace Environmental Modeling (GEM) magnetic reconnection challenge. J. Geophys.
Res., 106:3715–3719, 2001.

[19] D. R. Reynolds, R. Samtaney, and C. S. Woodward. A fully implicit numerical method for single-fluid
resistive magnetohydrodynamics. To appear in J. Comp. Phys., 2006.

[20] A. C. Hindmarsh and R. Serban. User documentation for CVODE v. 2.2.1. Technical Report UCRL-SM-
208108, LLNL, Dec 2004.

[21] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward.
SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw.,
31(3):363–396, 2005.

[22] V. Venkatakrishnan. Convergence to steady state solutions of the euler equations on unstructured grids with
limiters. J. Comp. Phys., 118:120–130, 1995.

[23] W. D. Gropp, D. E. Keyes, L. C. McInnes, and M. D. Tidriri. Globalized Newton–Krylov–Schwarz algorithms
and software for parallel implicit CFD. Int. J. High Performance Computing Applications, 14:102–136,
2000.

[24] C. T. Miller, G. A. Williams, C. T. Kelley, and M. D. Tocci. Robust solution of Richards’ equation for
nonuniform porous media. Water Resour. Res., 34:2599–2610, 1998.


